PATOGENISITAS Sclerotium rolfsii, Rhizoctonia solani, DAN R. bataticola DARI BEBERAPA SUMBER INOKULUM TERHADAP KECAMBAH WIJEN (Sesamum indicum L.)

Titiek Yulianti dan Cece Suhara

ABSTRAK

Sclerotium rolfsii, Rhizoctonia solani, dan R. bataticola merupakan patogen penyebab rebah kecambah wijen. Gejala yang ditimbulkan adalah benih mati sebelum berkecambah atau muncul ke permukaan tanah atau kecambah rebah/layu. Uji patogenisitas jamur-jamur tersebut terhadap kecambah wijen dilakukan untuk mengetahui media yang paling baik untuk memperbanyak patogen dan dalam menyebabkan penyakit. Media yang diuji adalah media pasir jagung, biji kapas, gubah beras, dan seikam. Kecambah yang terserang S. rolfsii paling banyak (87,3%) ketika biji wijen ditanam dalam pasir yang diinokulasi oleh S. rolfsii yang dibiacukan pada media seikam atau biji kapas. Sedangkan untuk R. solani media terbaik adalah biji kapas atau pasir jagung dengan keparahan penyakit yang ditimbulkan masing-masing (100%) dan 93,3%. Media terbaik untuk R. bataticola adalah seikam. Namun, jamur-jamur tersebut memiliki patogenisitas yang tinggi dan tidak berbeda ketika diinokulasikan ke benih wijen yang ditanam pada media water agar.

Kata kunci: Sclerotium rolfsii, Rhizoctonia solani, dan Rhizoctonia bataticola, wijen, patogenisitas, rebah kecambah.

PENDAHULUAN

Wijen merupakan tanaman penghasil minyak nabati yang mengandung asam lemak tak jenuh cukup tinggi sehingga baik untuk kesehatan. Itulah sebabnya minyak wijen banyak digunakan dalam aneka industri seperti makanan, komestik, dan obat-obatan.

Sampai saat ini metode yang efektif untuk mengendalikan patogen-patogen ini belum banyak dikembangkan selain penggunaan varietas yang tahan. Pengendalian penyakit terpadu yang menggabungkan beberapa komponen pengendalian yang ramah lingkungan perlu dikembangkan untuk menganalisisasi terjadinya ledakan penyakit. Langkah pertama untuk mengetahui metode pengendalian yang efektif adalah melalai bioekologi jamur-jamur tersebut. Menurut Dodman dan Fientje (1970) para tidaknya tanaman yang terserang R. solani selain dipengaruhi oleh kelembapan dan suhu tanah, yang utama adalah status nutrisi inokulum, dan stimulan pertumbuhan miselja jamur seperti ekstak akar. Demikian juga halnya dengan R. bataticola, perkecambah sklerosia maupun kemampuan infeksiya sangat dipengaruhi oleh bahan organik selain pupuk anorganik (Barnard

*) Masing-masing Peneliti pada Balai Penelitian Tanaman Tembakau dan Serat, Malang

84

BAHAN DAN METODE

Percobaan kedua adalah melihat perkembangan penyakit rebah kecambah wijen oleh ketiga patogen tersebut. Untuk melihat perkembangannya benih wijen ditanam pada tabung reaksi (diameter 5 cm) yang berisi media water agar. Sumber inokulum diberikan sekitar 10 mm dari benih. Setiap sumber inokulum diulang 10 kali. Perkembangan jamur dan infeksiannya diamati setiap hari. Percobaan ini tidak menggunakan rancangan perco- baan karena berisi pengamatan perkembangan gejala penyakit.

HASIL DAN PEMBAHASAN

Tanaman yang diberi media bahan organik tanpa patogen tidak menunjukkan gejala layu sama sekali dan seluruh benih berkecambah 100%. Kecambah yang ditanam pada tanah yang diinfestasi dengan patogen memberikan gejala layu-mati. Kematian tertinggi terdapat pada kecambah yang diinfeksi dengan R. solani yang berasal dari biji kapas steril (100%). Gabah merupakan media yang paling jelek bagi S. rolfsii. Sedangkan media terbaik untuk meningkatkan patogenisitas R. bataticola adalah sekam (83,33%) (Tabel 1).

Semua kecambah wijen yang ditanam pada media water agar yang diinfestasi oleh S. rolfsii, R. solani, dan R. bataticola mati. Kecepatan perkembangan penyakit rebah kecambah pada water agar tidak berbeda baik dari sekam, biji kapas, ga-

Tabel 1. Kepahapan penyakit rebah kecambah wijen yang diinokulasi dengan *S. rolfsii*, *R. solani*, dan *R. bataticola* yang berasal dari media berbasis bahan organik

<table>
<thead>
<tr>
<th>Sumber bahan organik</th>
<th>Damping off pada wijen yang diinokulasi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S. rolfsii</td>
</tr>
<tr>
<td>Sekam</td>
<td>87.34 b</td>
</tr>
<tr>
<td>Gabah</td>
<td>55.33 a</td>
</tr>
<tr>
<td>Biji kapas</td>
<td>87.33 b</td>
</tr>
<tr>
<td>Pasir jagung</td>
<td>84.67 b</td>
</tr>
<tr>
<td>BNT (5%)</td>
<td>8.15</td>
</tr>
</tbody>
</table>

) Angka yang diikuti huruf yang sama tidak berbeda nyata pada uji BNT 5%

KESIMPULAN DAN SARAN

Meskipun untuk uji di tingkat laboratorium (dengan menggunakan water agar) sumber inokulum bisa berasal dari biakan yang dikembangkan dari empat bahan organik yang dicobakan, namun untuk pengujian di rumah kaca yang menggunakan pasir steril diperlukan sumber inokulum yang berasal. Bahan organik yang paling baik untuk membiakkan *S. rolfsii* agar patogenitsasnya tinggi adalah sekam atau biji kapas, sedangkan untuk *R. solani* adalah biji kapas atau pasir jagung dan untuk *R. bataticola* adalah sekam. Hasil penelitian ini dapat dijadikan acuan untuk pengujian-pengujian patogen tersebut di masa yang akan datang.

DAFTAR PUSTAKA

